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ABSTRACT

The design and implementat ion of a symbolic input and computation

package and its application to the development of several new surface

interpolation schemesare described . Capabilities such as the composi-

tion of operators and symbolic differentiation have been incorporated

into the system. This allows , in particular , the specification of

boolean sum projectors. The new schemes which have been implemented

include an interpolant to randomly spaced data and a “shape operator ”

which has quadratic precision.
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INTRODUCT ION

Recent work in Computer -Aided Geometric Design can be classified

into the following three a:eas [93: graphical input/output , man-

machine communications and mathematical representation. In any ef-

fort toward developing new mathematical schemes of surface represen-

tation , a computer , with its associated graphics hardware and soft-

ware, has become an indispensable tool .

However , despite the current sophistication of computer graphics

technology , there is still room for improvement at. the computing end

of CAGO research. Each time a new surface inte rpolation scheme is

conceive~L a significant amount of work in the form of ma thematical

man ipulations, analysis and subsequent software implementation has

to be done , before a compu ter display can be produced . A large amount

of this work can be viewed as error-prone, time-consuming overhead

when one considers that much of the underlyin g mathematical operations

and software implementations of different polynomial interpolation

schemes are basically similar in nature . They mostly deal with eval-

uating functions , taking partial derivatives , composing linear

operators, and the like.

Much of the tedious symbol ic al gebra i c man ip ulat ions heretofore

done by hand could be implemented as part of a software system for

researching CAGD techniques . Such an approach would especially be
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useful to CAGD in view of the theorems developed by Elarnhill and

Gregory [2,3), Gordon [11], Cohen and Riese nleid [7], whIch concern

boolean sum interpo lants and their interpolation and precision pro-

perties. These theorems provide a framework in which old or new

interpo lants can be “combined” to form other interpolants which will

possess the desirable properties and el iminate some of the shc’rt-

comings of the original interpolants. One of the more powerful re-

sults of boolcan sum interpolation theory is a composition theorem

due to t3arnh il l and Gregory [23 tha t states the boolean sum of two

projec tors

P~~ Q = P + Q - P Q

has at least the interpolation properties of P and the function pre-

cision of Q. Here we recall that an operator P is linear if

P(af + bg) = aP(f) + bP(g)

and idempotent if

P(P( f)) = P( f)

: and that a projector is a linear , idenipotent operator [11). The

polynomial precision of a projector P Is the set of polynomials w h i c h

P wil l reproduce.

Pocppelme i cr [15) provides an illustration of this theorem by

combining Shopard ’s projector, whi ch interpolates to function and

first derivative data at randomly positioned points , but has only

linear precision (I.e. , it only reproduces planes exactly) and the
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Barnhi ll-Gregory nine-parameter interpolan t, which has cubic prec i-

s ion, to obtain an interpo lant with the interpolation properties of

Shepard ’ s formula , but with cubic precision. Barnh ill and Gregory

(2 ,3], Cohen and Riesenfeld [7] have also shown how boolean sum

theory can be used to produce interpolants free from compatibility

constra ints , the requirements for some interpo lants that the data

gi ven over the boundary of a patch be continuous everywhere on the

boundary and that the mixed partial s be equal at the patch corners.

One of the earliest (and by now classic), boolean sum Interpol-

ants is the Coons Patch [8]. It can be derived as follows: define

projectors P1 and P2 by

I.—. . 

P1F(x ,y) = (l-y)F(x ,O) + yF(x ,l) (1.1)

P2F(x ,y) = (l—x)F(O ,y) f xF(l ,y)

(see Figure 1). The boolean sum of these projectors is then the

bilinearly blended Coons Patch:

(P1 e P2)F(x ,y) = (P1 + P2 
- P1P2 )F (1.2)

+ (l—y)F(x ,O) + yF(x ,1)

+ (l-x)F(O,y) + xF(l ,y)

— (1—y) [(i—x)F(O ,O) + xF( l ,O)]
— y[(l—x)F(O,l) + xF(l ,l)]

It can be readily seen that this last expression , especially the part

involving the tensor product P1 P2F, can be obtained formally by a

process that is pure symbol manipulation .
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(0 ,1) ________________________ (1 ,1) (0,1) ________________________ (1,1)

P2

P1

(0,0) 
____________ ____________ (1 ,0) (0,0) (1 ,0)

Figure 1. Projector definitions on the unit square .
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I n order to motiv ate thi s work further , we look at the defini-

tion of a few more boolean sum interpolants. First , for the bicubi c

Coons Pa tch , define P1 and P2 by

P1 F ( x ,y) = ~0( y ) F ( x ,O) + ~‘0(y)F(x ,l )  + ~1 ( Y) F y(X~O) +

(1.3)

P2F ( x ,y) 4~0(x)F(O ,y) + ~‘0( x ) F ( l ,y) + ~1 ( x ) F ~(01y) + 
~Pi

( x ) F
~

(i ,y)

where

~0(t) = (t-l)2(2t+1 ) , •1 (t) = (t-1 )2t (1.4)

= t2(-2t+3) , ~1 (t ) = t2 (t- 1)

are the cardinal basis functions for cubic Hermite interpolation on

(0,1]. The boolean sum of P1 an d P2

(F’ e P2) F ( x ,y) = 4~(y ) F ( x~O) + ~~(y ) F ( x ,l) +

+ ij’1 (y ) F (x ,1)

(1.5)

+ ~ (x)F(O,y) + ~0( x ) F ( l ,y) + 
~1

( x ) F
~

( O
~
y) + 

~i ( x ) F
~
(l ,y)

- 4b( y ) [
~o

(x)F(O,O) + ~0( x ) F ( 1 ,O) + 
~i

( x ) F
~

(O ,0) +

- 

~‘0
(y ) [ ~0(x)F(O,1) + ~0( x ) F ( l ,1) + 

~i ( x ) F
~

(O ,l) +

-~~~~~~~~~~~~ 
. -— .——. - -——S - -- -
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- ~~~~~~~~~~~~~~ + ~i0(x)F~(1 ,O) + 
~i
(x)r

~~
(oio) + i~1 ( x ) F (l ,O))

- ~~~~~~~~~~~~~~ + P0(x)F~(l~ l) + .~1 (x)F (O ,l) + ~~( x ) F (l ,l ) ]

then yields the bicubic Coons Patch .

Now we examine an interpo lant over a triangular domain of defini-

tion , Niels on ’s interpolant [4]. See Figure 2. Define

P1 F 
= xF(1-y,y) + yF(x ,l-x) (1.6)

P2F 
= (Q1 ~ Q~)F = F(O,y) + F(x .o) - F(0,O)

where

Q1 F 
= F(O,y) and Q2F = F(x,0)

P1F interpolates to F on E3 and P2F interpolates to F on E1 U E2,

(P 1 ~ P 2 ) F = xF (1—y,y) + yF(x,1-x) (1.7)

+ F(O,y) + F(x,O) - F(O ,O)

- x[F(O,y) + F(l-y,O) - F(0,O)]

- y[F(O,l-x) + F(x,O) - F(0 ,O)]

I
Interpolates to F all along the boundary of the standard triangle.

Barnhill and Gregory have generalized this to interpolate cross

boundary derivatives [3].
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(0,1)

(0,0) (1,0) ~-

Figure 2. The standard triangle.
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All of the above examples demonstrate quite vividly that the

compu tation of boo l can sums is a symbol n~anipul at ion process. While

the above cases can all be done fairl y easily by hand , examples a-

bound where the computation of boolean sums is no longer a painless

operation . Poeppelmeier ’s work [15) is a case in point. Recall

that he used the Barnhill-Gregory interpal ant

UF(x,y) 
i=0 ~1 ~ )(1-x) 1 F0 1 (x,O) + 

~
:
~~I

(T~~
)(l
~
x)1 FO i (x ,l x )

(1.8)

+ 
i~Q 

~1(1-~~)(i-y)
1 
[Fi 0 (O1Y) 

- [~~i] (O,~)]

- 
x2yjx+y-1) 

[~~~~~~ (o~o) - (~~(~~))(o~o)]

where

(P2F)(O,y) = 4~0(y)F(0.0) + 4~1 (y)F0 1 (0,0) + J 0(y)F(O,l) (1.9)

+ ~b1 (y)F0 1 (0,1)

~~~~~~ Fl (O,y) y[i~~(y)F (o ,o) + ~~(y)F0 1 (0 ,O) +

(1.10)

+ ~1 (y)F0 ~(O~1)] + ~ (y)F1 0 (O,0) ~~~ [
~Fo i (o.o)

Pro l ’ ~~~ 
1

+ J .~=~j + ~P0(y)[F1 o(O ,l) - F0 1 (0,l)]
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I 1~ F 1(x , l - x ) 1  1
+ 
~1 (y) [F~~1 (o 1 l )  

~L ~

The ~~(t) and ~1 (t) are the cardinal basis functions for Herinite

two point Taylor interpolation on (0,1) given in (1.4). U is itsel f

a boolean sum of 2 projectors . It was then discret ized , i.e.,

changed into a form which will accept discrete data , to obtain

UF(x ,y) 
~O
(T~~

)[
~O
(x)F(OlO) + ~1(x)F 1 ~(O~O) + ;0(x)F(1 ,O)

+ 
~
‘l (x)F1 10(1 ,o)]

+ ~1(~~~)(l-x)[(l-x)F0 1 (O,O) + xF01 (1,O)}

+ ~0(~~~)[~0(x)F(O,1) + ~1 (x)[F1 ~(O~i) - F0 1 (O,l)]

+

+ 
~ 

x)[F1 ,~ hl ,o) - F0 1  (1 ,0)]] 
p

~1
+ ~ 1 ~~)( l-x ) [~-~( l-x) [ F 1,0(0, l )  + F0 1  (0, 1) ]

+ x[F1 10 (l ,0) + F0,1 (1 ,o)]

— ~~(x)F(O ,1 ) — ~(x)[F1 ,o(0i l
~ 

— F0
.~(O~1 )]  — ~~(x)F() ,0)

I
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— ~P~( x ) [ F 1,0(1~O) —

+ 4 0(1-~~)( l-y){ ( l-y )F1 o (O ,O) + yF1 o (0 ,1) - y[4~ (y)F (O ,O)

+ 4.j(y)F01 (O,O)

+ it’~(y)F(O,l) + ~p~(y)F0 i (0 ,1)J - ~0 (y )F 1 ~(o~o)

— $1(y)[-F0 1 (O,0) - F0 1 (O ,O) + F01 (l ,0))

- ~0(y)[F1 o (O ,l) - F0 1  (0,1)]

- ~1(y)[-F01 (0,1) + ~[-F01 (0,l) - F1 o (O, l) + F0 1 (l ,o)

+ F1 ,o (1 ,o) + 6F( O ,l )

+ 4 (F 1 o(0,1) — F0 i(O, l)) — 6F(l,O ) + 2(F~ ~(l ,0)

— F (1,0))]])0,1
- 

- 
X Y~~~Y~fl [-F 1,0(O,0) + F1 ~(O~l )  + F01 (0,0) 

- F0 1 (l ,Ofl .

At this point it should be obvious that generating formulas like the

preceding by hand is a time-consuming, painstaking procedure . In-

creasing the complexity even further , Poeppeln~eier then took the

boolean sum of Shepard ’s projector S with the above interpo lant , 

.. -
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SF = 

i=0 
A~ (x ,y) [F(x 11y 1) + (x-x.)F (x.,y.) + (Y-Y 1 )F~ (x ~~Y 1 )J

(1.11)

where

11/
+ (y_ y . ) 2

A 1(x ,y) = 
m 

3
m ‘ 

.— (1. 12)
E f l  2 2k0 ~=0 ((x-x~) + (y-y~) )

t~k

to obtain a new interpolant.

As new interpolants are constantly being developed which invar-

lably require the use of boolean sums at some stage , for considera-

tions such as compatibility , interpolation and precision , we find an

Increasing need to incorporate an algebraic manipulation capability

into a function and interpo lant display system .

Toward the above goals, this research has been concerned with

translatin g some of the mathematical objects and operations required

• in developing new interpo lants into programming constructs . The

impl ementation i ncludes a command lan guage processor, scanner ,

parser , symbolic computation , and formula evalu ation routines. This

package has been incorporated as a subsystem to SURFED, an interact-

lye interpolant display and manipulation system implemented by the

Univers i ty of Utah CAGO Group. The entire system runs on an E & S

Picture System connected to a POP 11/45 , taking 27K words of memory . 

-
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GENERAL FUNCTIONAL SP[CI~ ICATION A~4O STRUCTURE

OF THE SYSTEM

Before we proceed to describe the mechanisms used in the imple-

mentation of the system , we should be more precise about the prob-

lems we propose to solve. A good way to give this descri ption is

via a high-level functional specification of the system . Some cap-

abilities in the following list, part icularly those that pertain

to interpolant display and manipulation, and domain specif icat ion ,

are part of the original SURFED system , and should be cred ited to

the work of Riesen feld , Little , Ilerron and Dube .

System Requi rements

1. The system should run in interactive mode, allowing the user  to

enter interpolants and data from the terminal. The Picture

System display and tablet allow him to specify different views

of surfaces displayed. SURFED must also allow the user to

interactively manipulate the shape of the surfaces being dis-

played by changing the data being approxima ted.

2. It should be possible to enter an interpolant in symbolic form

and have it displayed as a surface in either parametric or

explicit form. The forms of Interpolants accepted are rational

blvariat e polynomials which contain point functional data. 

• -~~~~.-~~~~ ~~•
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Partial and mixed partial deriva tives may be necessary for des~
cribing a functional expression.

3 Surf~ces are defined for the standard domains below:

a. Rectangular grid

b. ‘Iriangulated grid

c. Randomly spaced data points .

4. Func tion and interpolant definitions are stored by the system

and can be referred to by name when used in subsequent defini-

tions. This, along with a composition operator , al l ows the

• definition of boolean sum projectors. Thus expressions that

may appear repeatedly in subsequent definitions need only be

def ined once.

• The block dia gram of Figure 3 further illus trates the structure

of the sys tem. The symbol man ip ula ti on ca pab iliti es are addi t ions

to the “Human Inter face ” and “Inter pol ant Computa tions ” parts of the

• orig inal SURFED system. . .

A more detailed explanation of the way the system functions can

only be gi ven by a user ’s manual of the system, therefore , we devote

the rest of this chapter to such a manual.

User ’s Manual for the System

Input to the system is In the form of a command file. The

r commands acce p ted are the follow ing:

p DEFiNE CONSTANT

DEFINE FUNCTION

DEFINE PROJECTOR
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Interpo lant &
Human Interpo lant

Functional Data
• . ser Interface 

_________________________ 

Computations

(Terminal ~ CR1) Shape ma nipulation (boolean sums .
evaluations )

Commands

such as surfaces
Move, visual stored
Rotate , feedback as
Scale, arrays
Interpolant
Selection , 

___________________

etc.
Graphical

Display

Routines

V

1 I
Figure 3. Structure of the system .
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DELETE

DISPLAY

EXIT.

In addition , a REDEFINE can be substituted for the above occurrences

of DEFINE.

We now give a more detailed description of the commands. The

Items enclosed in angle brackets: < > are described two sections

la ter, where we give a BNF description of the expression syntax used

in the system .

Commands

1. DEFINE CONSTANT

This command begins a section of definitions, each of which must

begin on a new line and end in a semicolon. Each constant defin—

• • Ition has the syntax $

<name> = <integer> ; 
•

2. DEFINE FUNCTION

This begins a section of function definitions, each of which

must be preceded by one of the followi ng lines:

GLOBAL

LOCAL CIRCULAR

LOCAL RECTANGULAR <integer>

where the integer is between 1 and 4. The two LOCAL definition

types indicate tha t the function definition that follows is

identically zero outside either a circular or rectangular domain.

This is used in defining . for example, haystack functions for

It  A
—-~~ •~~~~~~~~~~~~~ ,— ~~~~~~~~~~~~~~~~~~~~~ -- • -•

~~~~~~ .-.~~~~~~~ —-- • - - —--•- -



~~~~~~~~~~~~~
- —~~~ • • -  

~~~~~~~~~~~~~~~~~~~~~~~ 
. .. -

-

16

randomly spaced da ta . For each data point one local circular

domain , and up to four local rectangular domains , may be speci-

fied. Each function has the form:

<name> = <expr>

3. DEFINE PROJECTOR

This command begins a section of projector definitions, each

with the form:

<name> = <expr>

4. REDEFINE CONSTANT

REDEFINE FUNCTIO N

REDEFINE PROJECTOR

See Items 1 , 2 and 3 for the respective syntax of these commands.

Note that a <name > may appear in a REDEFI NE definition section

only if it has been previously defined.

5. DELETE

This deletes all definitions from the system except for the last

one. This command is used to provide more free storage .

6. DISPLAY <name> <integer>

This command causes the function or interpolant named to be dis-

played on the CR1 and passes control from the symbol mani pulation

subsystem to the rest of SURFED.

The name given must not have been defined to be a constant. The

integer may be 1, 3 or 4, depending on whether the <name> is of

an Interpo lant or function that is defined over randomly spaced

data, triangular or square patches , respective ly.
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This command must be followed by a line contain ing either the

word PARAMETRIC or EXPLICIT , which specif ies the mode of display .

7. EXIT

This causes a normal termination of the SURFED system.

Command File Forma t

A. Each command must appear on a separate line. Blank lines are

allowed . Only the first three letters of any command word needs

to be specified. Thus , DEF FUN is equivalen t to DEFINE FUNCTION

and LOC REC to LOCAL RECTA NGULAR.

8. Each definition section may contain an arbitrary number of defi-

nitions.

C. Definition sections may appear in any order and each type of

• definition section may appear more than once.

D. Constant, function and projector names appearing in a definition

must be defined previous to the curren t definition.

Rules of Express ions Syntax

The syntax of ari thmetic expression follows those of FORTRAN ,

wi th the following exceptions:

1. Continuation lines need not be denoted.

2. <expr>: <a FORTRAN expression whose operand syntax has

been changed as in i tem 3 below >l<iter > <expr>
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3. Operand Syntax

<operand~: = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<integer>: <dig it> j .zdigit> <integer>

<digi t>: = 0 1 1 12 1 . . . . 19

<var>: = U IV

<name>: = <letterl >~<1etter, <digit>

<letter>: = A !B !... IY IZ

<le tterl>: = A !... E IG I ... IQ IS IT~WL .. lz
<sub—var >: = <var> (<sub>)jR(<sub>)

<sub>: <arithmetic ex pression without parentheses , and

whose operands may only be <name> or <integer> >

<functional > :

<argl> : = O J l J U( <s ub > )  $

<arg2> : = O i l IV(<sub> )

<diff”: = DU I DV I DUDV I DVDU

Examples :

~~ 1(0,1) is exprcsscd as DUF(O,1). ‘

F(u

~

,vj) as: DUDVF(U(I), V (I)).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Syntax of i terated product or sum notat ion:

<iter> : <op>[<range~] 1~op>[<ran~e~ -~ ond>]

<range>: = <name > = <const ” ,<const >

<Const>: = <integer >~<na;~cr

<cond>: <name >’~ = <const >

Thus , the following mathe:~at ic al  expression:

i=l 
[(u1~1 + v

~
) ~ j=l 

(U1 - v
~
) ~ F(u~~1 1 V~~1 )) J

j / l

would appear in our command file as:

,N][ (U ’ 1+1 ) + V ( I )  )R {J=l , 10 ,J-~= I]

[(U (I)_v(I))*DVF(u(J_l ),v(J— l ) ) ] J
5. In addition , the composition operator CM(cproj ector na~e-~,

<proj ector na~1e~’) allows the com position of two projectors

to be defined. Note that the second projector in a composi-

tion is currently restricted to not contain any iterated p

product or sum expression.

Software ~adules Structure

This section describes the major routines that comprise the

system. Figure 4 contains an overlay tree diagram of these software

modules.

The Command File Processor reads the command file and interprets

•- - —-

~

—-_ - - •• -.- ~~~- • • • -
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SI~P 01FF [ SUBUV

APPLY E
~ 1’ I

_ _ _ _ _ _ _  _ _  I
L co~pos I EVAL I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

MAIN RCOT J

Figure 4 . System software structure .

.

~

- -

~

n

~

—- —~ —



each co - and. I.hen a def inition is spec it itd , ~it enters the na. e

and type (e.g., PROJECTOR, LOCAL CIRCULAR FUNCTION , etc.) of the

definition into the symbol table , then calls SCAN to perform lexical

analysis on the input string. The parser parses the scanner output

using the operator-prec edence parsing technique, modified to take

care of subscri pt expressions and nested summa tion and product

expressions.

If the definition being processed contains a composition opera-

tor, PARSE calls CO~P0S to perform the co:~pos ition . It is here

tha t APPLY is invoked to apply a point functional to a previously

defined operator expression. When the functio nal being applied

• involves the taking of partial derivatives , 01FF is called to per-

form the symbolic differentiation. SUSUV is then invoked to subst i-

tute the arguments of the functional in the second operator of the

composition . Some basic sim plification is performed , e.g., checking

for a 0 or 1 multiplicand or exponent.

When the Command File Processor encounters a OISPLAY command .

it passes control to the S1~RFED System. which eventually calls

EVAL to evaluate the pos tf ix definition of the projector specified ,

and generate values for the surface to be displayed. Since the

function values are not bound until evaluation time , a new expression

need not be created each time the parameters for a surface are changed

during shape manipulation . EVAL was written by simulating recursion

in FORTRAN in order to be able to evaluate nested summ ation and

product expressions.

In addition to the above , there are many utility routines which

—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
—

~~—-~~
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are called by the above modules arid reside in the l ower nodes of the

overlay tree of Figure 4.

Before we discuss the system in further detail , we consider the

question of why we did not use an existing al gebraic manipulation sys-

tem such as REDUCE [13] as a preprocessor to perform the symbolic corn-

puta tion tasks of our system . The answer is that this method does not

provide a sufficiently high level of user interacti on. .. . an alge-

braic manipulation system achieves its greatest effectiveness if used

m a  highly interactive man -machine environment. The steps whi ch the

user takes in solving a problem very often depenJs upon the resu lts

of preceding calculations and , therefore , a complete uprogram u in the

conventiona l sense is often impossible to write a priori. ” [13].

The system we implemented , which integrates symbolic computation and

surfaced isplay functions , does satisfy the interaction requirement.

_ _ _ _  -~-j
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PROGRAM~U~ G A~D DATA ST~ UCT U ~ I NG TEC H ~ :QuES

USED IN THE S Y ST EM

• 
. We now discuss the major design choices involv ed in the concep-

tion of the system .

FORTRAN was selectod for use in writing the system for the co m-

pell i ng reasons of portability , accessibi lity , efficiency and com-

patibility with the existing host system S~~ F ED .  It is wel l  known

to any system designer that th~ data structures to be used deserve

primary considerat ion in the design process. Since the objects we

a-’~ deal mc i  wit~i are of the ge~ieral rationa l , bi variate po nomi al

form, how shall we represent them inside the computer?

One method is to use a square array , with indices based on :erc .

The coefficients of a bivariate polynomial can be stored in the

entries of the array w i t h  the row number of the entry represe ntiri ci

the power of x , and the col umn number representing the power of y.

This method has the advantages of efficient computat ion--operations

such as addition , mul tiplication , taking partial derivatives and

evaluation are fairly straightforward to implement and fast to

execute .

But this representation of polyno m ials has been criticized for

wasting storage space in the case of sparse, high degree polyno m ials ,

see [6). Thus existi ng algebraic m anipulation system s, such as R DUCE

Ii!
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[13] and ALT RAN [14] reject this method in favorof a list representa-

tion which , along with storage manayement routines , does keep memory

require ments down for operations with sparse , high degree polyno m ials ,

particularly if they are in more than two variables.

Although a list representation generally leads to easy-to-use

recursively defined algorithms and elegant, top-down program develop-

ment, there is the ususal time and space overhead associated with

using a linked list data structure , and its requisite storage manage-

ment routines. Time and space considerations often lead to the use

of a linear array data structure , usually with the sacrifice of

flexibility and elegance.

Moreover , there are several characteristics peculiar to the sys-

tem that prompted the use of a linear array to represent the mathe-

matical formulae. One such consideration is that the operands in our

expressions may be arbitrary in length . They range from s imp le v an-

ables and integers to subscripted variables and mixed partial

derivative functionals, e.g., DUOVF (U(I+l),V(I+l)). In order for a

list structure to accommodate this, either variable-sized nodes or

additional levels of indirection would be required . Pattern matching

and searching, required by operations such as operator composition

and variable value substitution , can be easily performed on a

linear string array .

Considerations such as the above led to the final decision to

store the mathematical expressions as a linear string array, in post—

fix form , similar to the internal form for expressions used in many

compilers and interpreters [12]. Each token in the string has a
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type and value field. A postfix formulation has the well-known ad-

vantage of efficient evaluation. It is also conveniently the output

of the standard operator-precedence parsing technique and it presents

the tree structure of an expression in an easy to access fashion.

Thus , with this data representation , algorithms which either do or

do not require knowledge of the tree structure of an expression can

process an entire expression with a linear scan.

The nost difficult operation tha t is required to be performed

on the mathematical expressions in this system is that of composition

of two operators . This often involves the taking of derivatives .

In the next section a new symbolic differentiation algorithm is

described , which has been developed to work on an expression in

linear array postfix form.

A Non-recursiv e Ajg ~~jthm for S bol ic DjfferentiatienJ~jnq a

Linear Array Data Structure

In this algorithm two stacks of pointers , rather than recursion ,

are used to treat nested subexpressions.

A. Data Structures: A linear array , SYMBOLS , two stacks A and B.

B. Assume the algebraic expression to be differentiated is in

syntactically correct postfix form and stored on SYMBOLS begin-

ning at FIRST and ending at LAST.

C. The expression consists of tokens which are either operators or

r operands. The operators belong to the set R = [+ , • , ~~, / , t } .

In the description that fol l ows , we restrict R to be (+ , ~ , ~- }

for the sake of brevity. Extension of the algorith m to include

- ~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~ --
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- and / should be obvious. The operands in the actual imple i :en-

tation may be integers , variables , subscripted variables or

point functionals such as 
~~~~~~~~ 

Fu (l~
O)
~ 

etc.

We note here that , since the system currently only deals with

rational polynomial forms , the parser only accepts integer expon-

ents, since allowing exponents to be expressions would require

a log function for purposes of differentiation .

D. The dif ferentiated result wi l l  be another pos tf ix expression

stored beginning at SYMBOLS(LAST+l).

E. In describing the algorithm we ma ke the simp lify ing assumption

that each.operator or operand occupies one entry in the

SYMBOLS array. -

The basic stragecy involves scanning the input string from left

to ri ght , since it is in postfix form ; this corresponds to a post-

order traversal of the expression tree.

Step 1. Begin by differentiating the first symbol , which has to be

an operand.

Step 2. If the end of input has been reached , stop.

Step 3. The types of the next two symbols are used to identify

three possibil it ies.

The nex t two symbols may be:

Case 1: operand-operator

We output the derivative of this subtree and set the

curren t input pointer to point to the operator. Go

back to Step 2.
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Case 2: operand-operand

• This means the right subtree assoc ia t e J w i th  the lef t

subtree just differentiated is not a simpl e operand but

a subexpression . We set the curren t input pointer to

the next operand , output two nulls on the output str ing,
• push a pointer to the subtree on the input string which

has just been diflerentiated onto stack A and push a

pointer to the two nulls on the output string onto stack

B. Go back to Step 2.
• Case 3: opera tor-whatever

This means that we have ~~st finished differentiating

and outputting a ri ght subtree . Now we can pop stacks

A and B to obtain pointers to the corresponding left sub-

tree on both the input and Output strings. This is neces—

sary because for the * or / operator , we need to access

both the different iated and undifferentiated forms of

both its left and right subtrees. Go back to StLp 2.

A more precise description of the algorithm is given below

• . using the programming language ALGOL . In this descr i pti on

we assume , for simplicity , that each operator and operand

occupies one entry in the SYMBOLS array.

F. Utility routines :

1. PUSHA , raM, PUS~iB , POPB operate on stacks A and B.

2. Operator and rperand are predicate functions wh ich test the

type of their arguments.

3. Get and Put gets from and puts to a token at the specified

position on SYMBOLS and increments the civ en pointer.

4. Diff differentiates an operand.

- - “ - - - —-  
-—

~~~
—

~~~~~~~~
--
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beq in

I:=FIRST: FREE: LAST + 1;

put (FREE , diff (SYMBOLS (I))):

while I<LAST do

begin

Il : 1+l ; I2:~ I+2;

(Check next two symbol types.)

If operand (SY M BOLS (i l ) )  then

If operator (SYMB OLS ( 12)) then

begin

(Case 1: The next t o  symbols are oper~nd-o~ora-

tori

If SY MBOLS (1 2) = ‘ + ‘ th~n

begin

put (FREE , d i ff  (SY ~~G L S ( I l ) ) ) ;

put (FRE E , 1 + 1)

H
else if SY~GOLS(i2) =

~~~in

(Output pointer to SY~BOLS(Il). We are not concern•cd

wi th distinguishing between pointer symbo ls and con-

stants here, and leave that to lower-level routin es. )

put (FREE , SY~~OLS (Il); put (r~ [, ‘ A ’ ) ’

put (FREE ,d i ff (SYt~ OLS( II )));

(output pointers to ~Y~ ’flLS (I

put (FREE, I):

-~~~~~~~ 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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put ( FREE, ‘
~~ ~, put (rREE , ‘ + ‘)

end

• else beqin

(SYMBOLS(12) must be exp onentia tion ‘ t ’}

• . recal l  t h a t  we only allow cons tan t  exp onen ts .

put (F REE , SY M~C ) LS(I l ) ) ;

put (FRE ,’*’)1

(Output pointer to SY M BOLS ( I ) }

• put (FREE ,I);

put (FREE, SYMBOLS(Il));

put (FRE~,l); put (FREE, ’ - ’);

put (FREE . ‘ f ’) ;  put (FREE ,’ * ’ )

i , —“ .

(Case 2: the next two symbol s are oper and-operand

- 
pushb (FREE); pusha(I );}

put (FREE, NULL) ; put (FREE , NULL) ;

put (DIrr (SYM ~3QiS~ I) ) )

end
I’ else be1in

(Case 3. The next one symb ol is an ope rator which

cannot be ‘~~~
}

popa (APTR); poph (BPTR);
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If SYMBOLS (Ii ) ‘+ ‘

then put (FREE , ‘ 4 ’)

else begin

(SYMBOLS(ll) must be ‘* 1 )

put (BPTR ,I); put (BPTR ,I)

put (F REE ,APTR) ; put (FREE , 1* 1 ) ;

put (FREE ,’+’) ( —

I: 11

H
end;

Note that in the resulting postf ix expression there are pointers

to the root of subtrees (subexpressions). These subexpressions are

recovered by using a copy operation and noting that in a binary tree ,

the number of non-terminal nodes (operators) is always one less than

the number of terminal nodes (operands). Routin es that do bas ic

simplification on the resulting expressions have been implemented

to reduce space requirements. 
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AN APP LICATION

We now describe an application of the system which uses the

8arnhi ll-Gregor~’ composition theorem to combine an interpoiant and

an approxi:: ant to obtain a C2 interpolant to randomly spaced data with

quadratic precision. The symbolic processing capabilities added to

SURFED permitted rapid implementation of these schemes , since the

time required to translate from mathematical ideas to computer-accept-

able form has been reduced to a fraction of the manual algebraic

manipulation , programm ing and debugging tim e previously required.

Scheme 1. A C Interpol ant to Randomly ~Position ed Data

Assu me we are given (x
~ ~~~ 

I = l ,...,n , arbitrar’fly spaced

in R2, and at each (x1, 
~~ 

we are given function val ue and tangent

infor rnation F(x ~~y~)~ F
~

(x
~

1y.), F~(x~ ,y1 ). W e define below a C 2

interpolar.t to this data.

First , pre-process the data by finding for each (x
~~

y 1 ) a

c i rcle C 1 with its center a t (x~~y~) and radius R 1, chosen such that

C1 does not contain any other data point in its interior. We can ,

for example , choose R 1 to be the distance from (x 1~y~) to its

closest neighbor.

R. = mm ((x i 
— x.)2 + - y.)2)

1 l<j< n
j~
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• The distance function d1, that is C a t (x
~
,y1 ) arid I on 3C1, is

defined by

Cx - x.)~ + (y - y.)2
d.(x ,y) = - 

1 1
1 R~1

We can now define a mollify ing function at each (x~~y~):

~q(d1 (x ,y)) , for (x ,y) c C 1
H1 (x ,y) = ‘~

~ 0 , elsewhere

whe re

q ( t ) = (t - l) 3(3t - 1)

is the fourth degree polynomial with the following cardinal proper-

ties:

q (O) = 1,

and

q ’(O) = q (l) = q ’(l) = q” (l) = 0

To use these H1 as cardinal functions in the interpolant , we

define the truncated Taylor operator:

L~ F(x ,y) F(x1,y1) + (x-x 1 ) F
~
(xm~

y
~
) 4 (y

~yi ) F~(x1~Y1 )

Then the projector P defined by

n
PF(x ,y) E H.(x ,y) L.F(x ,y)

1=1 1 1

r
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yields a C2 surface that interpo~ .s to function and first derivative.

• Scheme 2. A Precision Operator

We now present a projector which can be used as a “shape ” operator ,

i.e., w hen it is used as the second proje ctor in a boolean sum , it

helps to produce a projector which preserves the shape of the given

data. It has quadratic precision if we have 9 data poin ts given on

a rectangular grid , and is easy to compute. It is based on the idea

that a multivariate polynomial is its own Taylor series expansion .

That i s , a truncated multivariate Taylor series can be thought of as

an operator wi th polynomial precision up to the term of truncation.

We specialize this to the case of a bivariate Taylor expan sion about

the point (a,b) and truncated after the ten~is of second degree. T bns

we define the operator B:

B F(x ,y) = F(a,b) + (x-a) F
~

(a ,b) + (y-b) F~(a~b)

2 F (a ,b) 2 F (a,b)
+ (x-a) XX

2 
+ (y-b) 

~
“
~
‘
2 (4.1)

+ (x-a)(y-b) F
~~

(a
~

b)

While this opera tor yields quadratic precision , it requires data that
p is almost never given , namely, the first and second derivatives.

We recall that (Con te and deBoor , p. 196) for apolyno mia l of degree

k ,

k I  Pk [x o,xl,...,xk] (4.2)
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where the right hand term is t -th divided differen ce ta ken over

the points x0,x1,... )Xk.

We also no te tha t for

f(x) = x2, f’(a) f ± ~1J~~~ f(a-hj = f[a h, a+h] (4, 3)

Since we are only concerned with wha t effect our opera tor A w i l l

have on the po lynomials 1 , x , and x2, (4.2) ar,i (4.3) imply that we

can replace the derivative terms in (4. 1) with appropri ate divided

differences and retain the quadratic precision property.

Thus we obtain a bivar iate quadratic precision operator:

B F(x ,y) = F(a ,b) + (x -a ) ~~~+s , b)- F(a-s ,b)

+ (y-b) 
~~~~~~~ 

F (a,b-t )

+ (x~a)
2 F(a+s,b) - 2F(a,b) + F(a-s ,bj

2s

÷ (y-b) 2 F(a ,b+t) - 2~~a ,b) + F(a ,b-t )

+ (x-a)(y-b) F(a+s ,h+t) - F(a+s~b-t ) - F(a-s,b+t) ~r (a-s,h-t )

Note tha t B only requires function value information at 9 points on

a rectang le
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(a-s ,b+t (a ,b+t) (a+s,b+t)

(a—s,b) • 

(a,b) • (a+s, b)

(a-s,b-t _________________ ________________- (a+s,b-t)
(a ,b-t)

and that B interpolates to the 5 points (a,b) , (a ,b+t) , (a ,b— t ) ,

(a-s ,b), and (a+s ,b). -j
Graphical Studies

Although Scheme I is a smooth interpolant to funct ion value and

derivative information at randomly position ed points, it does not

have any precision property. This means that while this interpolant

looks acceptable for data values close toO , (seeTable l and Figures 5 and

6), it does not have the shape-preservation property for larger

magnitude data values . Thus for a second set of data , (Table ii)

Scheme 1 (Figure 7) looks “bumpy .”

To remedy this problem we take the boolean sum of Scheme 1 with

the shape operator of Scheme 2 (Figure 8) and obtain the resultant

interpolant of Figure 9. The only “bumpiness ” in this last figure

is induced by a large variation in the given data . Figure 10

demonstrates the quadratic precision property of the interpolant ~hich

is a boolean sum of Schemes 1 and 2, by applying it to the function

x2 + y2 Figures 11 through 18 show how Scheme 1 and its boolean

sum with Scheme 2 behaves for the functions (x2 + y2)/(l + x + y),
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. - - -
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+

+
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- 4  -+

r Figure 5. Positions of the data Doints in the [0,1] x —

[0,1] domain for the exp l i c i t  surf aces of
Figures ô through 20. See Tables I and II.

H : ~
1u-i

~~~~~~~~

Figure 6. Scheme 1. Explicit. Data : Table I.

- --
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Figure 7. Scheme 1. Explicit. Data: Tabl e II.

Figure 8. Scheme 2. Explicit. Data : Table II. 

~~ - -• ~~~~~ -• -  _ _ _ _ _  _ _ _ _ _ _
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- 4 :

• Figure 9. Scheme 1 boolean summed with Scheme 2.
Explicit. Data : Table II.

I—-
’

/ / 1  / /‘
• \X\.\ ~~‘\, ~~~~~~ / / 1/

1~ -

p

• Figure 10. Scheme ‘I boolean summed wi th Scheme 2.
Explicit. Data : x2 + y2.

-—-----.

~

•- -•

~

--“---

~

- ------ •~~~~~- --  

j
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Figure 11. Test function (x2 + y)/(l + x + y). Explicit.

/ 
I

Figure 12. Scheme 1 boolean summed with Scheme 2. Explicit.
Da ta: (x2 + y)/(1 + x + y). The midpoint of
each stick indicates interpo lation at that
data point.
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• Figure 13. Test function 1/2 sin xii/2 cos y~/2. Explicit .

‘
~ 

• 
Figure 14. Scheme 1. Explicit. Data : 1/2 sin x~/2

¶ 
COS yii/2. 

-
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Figure 15. Scheme 2. Explicit. Data: 1/2 sin xTr/2
cos yn/2.

• I H

~ I

Figure 16. Scheme 1 boolean summed with Scheme 2. E~p 1icit.
Data : 1/2 sin xii/2 cos y~/2. The midpoint of
each stick ind icates interpolation at that

• data p oint.

II
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• /

Figure 17. Test function 1/2 sin x~r cos yir.

/ 
./ /

f
/

I

Figure 18. Scheme 1 boo lean summed with Scheme 2. Ex plicit.
• Da ta: 1/2 sin xn cos ylT .
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1/2 sin xn/2 cos y-n/2, and 1/2 ;in xi~ cos ylt, over the area [0,1] x

(0,1). Note that all of the above figures are of interpolants

defined explicitly over the domain [0,1] x [0,1].

The data sets for the figures mentioned above all contain nine

points that are regularly positioned in the domain space. This is

a constraint in using Scheme 2
• 
as a shape operator. We could remedy

this probl em by doing parametric interpolation to the data in the

(x,y,z)-space and specify nine of our points in the domain (u,v)-

space to be regularly spaced . Figure 19 demonstrates the feasibiI-

Ity of this approach -for the data set given in Table III.

Conclus ion

We have seen that, with the addition of some basic symbolic

computation capabilities to SURFED , the correct implementation of a

• large class of interpolation and approximation schemes now becomes a

simple and routine matter. Tedious, error-prone and mechan ical tasks,

such as translating from mathematical formulation to program , compo-

si tion of operators and formal differentiation are no longer the

burden of the researcher. 
p

For the schemes decr ib ed here , the actual symbol mani pul ation time

Is on the order of a few seconds. The time—consuming operation has

been generating values for a surface to be displayed . This involves

calling EVAL hundreds of times for a random data interpolant. This,

perhaps , suggests the need for more sophisticated simplification

routines. Of more certain benefit would be to speed up the

evalua tion routine , maybe recoding it in a lower-level language . 

-- -- .• - _ _ _ _
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Figure 19. Scheme 1 boolean summed wi th Scheme 2. 
p

Parametric. Data: Table III.

I
’

_
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This is a one-time effort which would improve the system performance

for the implementati on of all future sc hemes. Th is cert ainly has an

advantage over the prev ious method of FORTRAN coding, manual ly

optimizing and interfacing with SURFED for each new scheme being

developed.

The symbolic computation part of SURFED currently occupies about

27K of 16-bit words on the PDP—l1/45. Better memory management and

use of secondary storage would probably also improve overall per—

formance of the system.

Other useful extensions of the system involves the specification

of ex press ions of more general forms . Foremos t among these i s perhaps

allowing the definition of transfinite interpolants , includ ing the

identity operator. This may imply the need for automatic discreti—

zation of trans-Finite schemes, once again done symbolically. The

expression types used may also be extended to include as part of

their definition -functions for which symbolic differentiation can be

performed and which are common FORTRAN library functions, e.g., exp,

log and the trigonometric functions-. Projectors containing nested

summation and product expressions can perhaps be specified as the

second operator in a composition . This implies being able to sym-

bol ically differentiate such expressions.

The features implemented in this system enable the re~earc h
p mathemati cian to study graphically mathematica l surfaces without

becoming involved in the distracting details of software development,

interfacing and implementation . This kind of application of symbolic

computation to numerical analysis should benefit future research in

the area of computer-aided geometric design , by allow ing the user
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I I of this package the facility to explore and experiment in a far-rang- 

p

Ing and unemcumbered environment of interactive symbolic computation.

This researc h, as it brings together symbolic processing and

• curved surface definition , emphasizes the importance of the non-numer-

- Ical tasks involved in computer-aided geometric design. Consequently,

it may provi de further impetus for researchers in thi s area to ado pt

programming languages like PASCAL , which are considerably better

suited for these kinds of mixed computational problems.
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DEFINE FUNCTION
01. OItAL

1U1 ( ‘.• I J - - I J (  I) )*~~7 - f ( V — V (  I) ) * *2 ) / R (  I )** !
L. h E A L. C! r~t:t iiH 1-~ ( 1— 1I 1) ** .3 9 c ( i - - 3 * D [ )

DEFINE rRft I l  rinr. SCHEME 1
P1 = &CI~~i , t :~ I U U 1 * ( F  ( U I )  ,~U

’.I( I)) ( U - —t i C I )  ) *L itJF ( IJ ( ( ) ,tJ( ] )

+ (V-—V (I) ) * 1SVF ( U ( I) ,VU) ) ) ) J ;

DEFINE FUNCTION SCHEME 2
GLODAL.

H1~ F ( t J~i ) , V ( T )  ) f ( t J i / 2)* ( r C U ( 8 ) , V ( R - - r ( U ) , V ( 7  ) )

+ CV— 1. /2 )  * ( F  (U (6 )  , V ( 6 ) )  --F ( U C 4)  , V C 1) ) )  + (U - - I ~~‘)  * *2
* (F (11(8 ) , V ( 1 :3 ) )  2 ~F (tiCS) V (5 ) ) IF (ti C 2 ) V (2 ) ) ) *2;
GLODAL

*2 + ( U— 1 / 2 ) * (V - — 1 /2 ) * ( F ( t J (
~? )  ,c .C 9 )  ) - - - F ( U ( 7 ) , V ( 7 ) )

—F ( U ( 3 )  ,V (  3) ) - t  r C U (  I) ~~~ I ) ~~
;

riEr I N E  r’RoJI.:c ron
T1~- H i - I H 2 ;
A3 1-i- ri—CM C F’i ,T1) BOOLEAN SliM OF SCHEMES 1. ANI .I 2

DISPLAY A3 1
EXPLICIT

E X I T
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have been implemented inc l ude an interpolant to randomly spaced data and

- 

‘ \ a ~~hape operator”~hich has quadratic precision .
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